
Tiled Light Trees
Yuriy O’Donnell*, Electronic Arts

Matthäus G. Chajdas†, AMD

Figure 1: We present a new algorithm to handle many light sources in real-time applications. Our algorithm is built upon
“light trees”, which allow the GPU to efficiently handle a wide range of different light distributions. From left to right, we show
the shaded scenes, the number of light sources evaluated per tile using “practical clustered shading” and using our algorithm on
the right. Compared to the current state of the art, our algorithm significantly reduces the number of light sources that have to
be processed, in particular in distant areas of the scene.

Abstract

Handling many light sources in real-time is still one of the
big challenges in real-time graphics [Sousa and Geffroy 2016;
Garawany 2016]. Even the most recent approaches like prac-
tical clustered shading still have various problem cases with
low performance. Especially in scenes with high depth vari-
ance, existing algorithms cannot adapt to the distribution
of light sources properly and end up evaluating many lights
that don’t contribute to the final image.

We present a new approach, “tiled light trees” – a hierarchi-
cal acceleration structure that adapts to the light source dis-
tribution. Our approach improves on the worst case perfor-
mance of existing solutions. Due to traversal overhead, the
proposed algorithm can be sometimes slower than clustered
shading. To handle those situations optimally, we propose a
hybrid approach which combines the strengths of light trees
with clustered shading, outperforming any individual solu-
tion in nearly every case. Our new hybrid algorithm is easy
to implement and suitable for usage in real-time applications
such as games.

Keywords: lighting, culling, real-time

Concepts: •Computing methodologies → Rasteriza-
tion;

*e-mail:yuriy.odonnell@ea.com
†e-mail:Matthaeus.Chajdas@amd.com

1 Introduction
Tiled shading, and more modern variants of it like tiled de-
ferred shading, solve the problem of lighting a scene using
many light sources by binning lights in screen-space. This
drastically reduces the number of light sources that need to
be processed for each tile, allowing games to use hundreds
to thousands of light sources efficiently.

The general approach for tiled shading algorithms is to split
the screen into rectangular tiles and intersect each light
source with each tile’s frustum. This uses the screen-space
tile extents, as well as the min/max-depth of the tile to cre-
ate a frustum against which all lights are tested [Andersson
2009]. Such algorithms share the problem that due to their
2D only nature, the per-tile frusta have generally a very large
depth range and may intersect many light sources which do

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org. ©
2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
I3D ’17, February 25 - 27, 2017, San Francisco, CA, USA
ISBN: 978-1-4503-4886-7/17/03$15.00
DOI: http://dx.doi.org/10.1145/3023368.3023376

http://dx.doi.org/10.1145/3023368.3023376

not affect any geometry within the tile. This led to the intro-
duction of 2.5D algorithms which try to reduce the number
of false positives. The key idea is to subdivide not only in
screen-space, but also along the view direction. Typically a
frustum-aligned grid is used and the lights are sorted into it,
reducing the number of light/pixel tests due to the tighter
bounds [Persson 2013]. The data structures used are highly
uniform to allow for efficient assignment.

Our contribution is a novel approach which introduces “light
trees” as a new spatial acceleration structure for light culling.
Our approach is especially suited for handling many non-
overlapping light sources, which are challenging for current
algorithms. Similar to previous techniques, our light trees
are built on the CPU and don’t require CPU/GPU synchro-
nization as they are geometry independent. We also present
a hybrid approach which uses a 2.5D grid where each cell
contains either a list or a tree of lights. It combines the
strength of light tree structure with low-overhead list traver-
sal for grid cells in which most light sources cover the entire
cell. With this combined algorithm, we are able to improve
the robustness of 2.5D lighting algorithms while maintaining
all the properties which make them popular.

2 Previous work
Binning lights in screen space has been popularized by the
work of [Andersson 2009; Ferrier and Coffin 2011; Harada
et al. 2012], which was the first to introduce tiled lighting. In
tiled lighting, the screen space is subdivided into tiles. In the
first step, lights are culled against each tile in parallel, and fi-
nally, each light intersecting the tile is evaluated. Since then,
many game engines have used a variation of tile-based de-
ferred lighting. [Harada 2012] introduced a 2.5D algorithm
which splits the depth range and assigns lights to each cell.
The main advantage of this algorithm is that lights which do
not intersect the scene geometry can be quickly skipped, as
each shaded pixel only processes lights intersecting its grid
cell. This algorithm has been used in multiple game titles
with various tweaks and improvements. In general, the main
difference between the individual variants lies in the way the
depth is subdivided as well as in the light/tile intersection
test. In all cases, the goal is to reduce the amount of falsely-
tested lights.

A recent advancement in this area is clustered shading [Ols-
son et al. 2012]. Clustered shading reorders the individual
shading points to improve the light culling efficiency. By
working on clusters of geometry samples, it can perform
back-face culling against individual light sources. It uses
a global BVH built over all light sources in the scene. For
each cluster, the tree needs to be traversed. While similar to
our work, we do not require a global data structure for the
lights, and use a two-level hierarchy instead. This improves
performance as our trees are much smaller, resulting in a
more optimal traversal.

A production variant of clustered shading has been presented
by [Persson 2013]. Compared to the original clustered shad-
ing, the new algorithm is simpler and only clusters the lights
themselves, not the geometry. The lights are assigned to a
2.5D grid in camera space, which is subdivided along the z
axis in exponentially larger steps. This keeps the size of each
grid cell roughly constant in screen space and prevents far-
away cells from becoming pixel-sized due to projection. The
latest update to this technique includes more efficient light
assignment on GPU using conservative rasterization [Örte-

C
am

er
a

ne
ar

 p
la

ne

Camera space Z

Figure 2: Bounding interval hierarchy over light sources.
The light sources are already sorted by their center along the
z direction, so each tree node only needs to store the index
of the first light and the number of light sources.

gren 2015], which could be also used with our approach.

3 Our approach
We will first introduce “light trees”, as this is the core idea
behind our algorithm. Then we will describe a hybrid ap-
proach which combines it with clustered shading.

In all cases, our technique uses both the CPU and the GPU
in each frame. Light sources are always pre-processed on
the CPU, then uploaded to the GPU and finally used for
lighting. On the CPU side, we perform the following steps:
First, we frustum cull light sources, then we sort them by
distance to the camera plane. Next, we bin the light sources
into screen-space tiles and finally we build light-trees per
screen-space tile.

On the GPU, we identify the light tree covering the current
pixel and traverse it during the lighting pass. Notice that
our technique only requires information about the camera
and light sources, but not scene geometry. It can therefore
be used in both forward and deferred shading contexts. An-
other advantage of not needing the geometry data is that
light trees can be prepared in parallel with rendering the
g-buffer or shadow maps.

The key idea of our algorithm is to use a light tree for each
2D screen tile. The light trees can perfectly adapt to the
distribution of light sources in depth as they are not limited
to a fixed grid along the z axis. Due to the local nature of
the trees – each tile has its own unique tree – we can also
generate very shallow trees with high coherency instead of a
global tree for all light sources [Olsson et al. 2012]. Small,
shallow trees are very suitable for GPUs which rely on very
wide SIMD units for execution and require optimizations
for both coherency as well as memory access to achieve good
performance. In the following section, we’ll describe the data
structure used for the light trees.

3.1 Light tree structure

We build a simplified 1-D bounding interval tree [Cormen
et al. 2009] over the light sources using their depth extents

in camera space as can be seen in figure 2. This assumes
that every light source has a finite influence radius. The
structure is a binary tree where every node contains a list of
lights and their aggregate depth extents. We always generate
full binary trees, rounding up the number of leaf nodes to
the next power of two. Using full binary trees allows us to
simplify the traversal and make it more coherent.

As mentioned before, execution coherency is not sufficient
to ensure good GPU performance – we also need efficient
memory access patterns. To this end, the trees are laid out
in memory using depth-first order. This allows fast traversal
on the GPU using a stack-less algorithm and improves cache
efficiency.

The traversal is strictly in the same order as the tree is
stored. That is, individual threads in a group only jump
forward in the tree. In case all nodes have to be visited,
memory will be traversed linearly, resulting in the optimal
memory access pattern. If the reads are sparse – indicating
very high coherency on the tree traversal – the execution will
skip over consecutive nodes, but never jump back in the tree.
Thus, the traversal is always efficient as tree nodes loaded
as part of a cache line are either fully processed, or skipped.

3.2 Tree construction

Before the tree construction starts, we first sort the global
list of light sources by their distance to the camera plane,
using a parallel radix sort. This is important as it allows
us to assign lights to tiles in the order required for efficient
tree construction, avoiding a per-tile sorting step. We found
global sorting to be cheaper than per-tile sorting when there
are many lights that overlap multiple cells. Once we have
the list of light sources for an individual tile, we process each
tile independently and build binary trees.

We use a bottom-up tree construction algorithm, which
builds a binary tree with breadth-first node memory layout.
It takes advantage of the fact that all light sources are al-
ready sorted by their distance to the camera plane. Building
each level of the tree is done by iterating over the previous
level and combining every consecutive pair of nodes. The
whole tree is constructed in O(n) time.

Listing 1: The tree nodes as used on the GPU.
struct Node
{

float minDepth;
float maxDepth;
unsigned firstLightIndex;
unsigned isLeaf : 1;
unsigned lightCount : 16;
unsigned skipCount : 15;

};

For the GPU, we want a depth-first tree as we want to have
consecutive nodes stored next to each other in memory. We
thus need to convert the tree from breadth-first order into
depth-first order. As the number of leaf nodes is always
a power-of-two, and generally small, we precomputed a few
conversion tables so we can translate a breadth-first tree into
a depth-first tree with a single pass over the data.

The alternative approach is to simply build the tree top-
down. This requires a more expensive building algorithm
which needs to compute the bounds of each node at every
level. The total build requires O(n logn) time. The upside

is that it may allow an optimal choice of split location and
will directly produce a depth-first tree.

Before uploading the tree to the GPU we pack it into the
compact representation shown in listing 1. Note that we
also store a skip count with each node which allows us to
traverse any binary tree laid out in depth-first order (not
only complete binary trees) [Smits 1998]. We store the skip
count, the light count and a leaf flag packed into a 32-bit
integer. The skip count is stored using 15 bits. We use one
bit to indicate if a node is a leaf. The remaining 16 bits are
used for the number of lights. This allows us to store up to
216 lights per tile. We target several lights per leaf node,
so the tree will contain generally much fewer nodes than we
have light sources.

3.3 Hybrid algorithm

On their own, the light trees provide a highly adaptive data
structure and often improve GPU lighting performance over
the “practical clustered shading” approach. Unfortunately,
there are still some combinations of view conditions in which
the light trees are slightly slower than just clustered shading.
In those cases, the light trees add a small, but noticeable
amount of overhead over just storing a list of light sources
and iterating over it. We thus combine our light trees with
a 2.5D grid and choose the optimal algorithm per grid cell.
The combined algorithm looks as follows: Just as before,
we start with frustum culling of the light sources and the
sorting by distance to the camera plane. The major change
is in the next two steps. We first assign the light sources
to frustum-aligned grid cells. Finally, we identify expensive
grid cells and build a per-cell light tree for those.

Listing 2: Heuristic for selecting between tree and list.
float sum = 0.0;
for (auto& light : cell.lights) {
sum += getClippedDepthExtents(cell, light);

}
if(sum / cell.lightCount < cell.radius) {
buildTree(cell);

} else {
buildList(cell);

}

We subdivide the depth similar to [Persson 2013] and decide
per grid cell if we want to store a plain list of lights, or use
the light trees. This requires a heuristic to choose between
the two options. We use the average overlap in z axis be-
tween a cell and lights assigned to it to decide between lists
and trees. When the average overlap is small compared to
the extents of the cell, the cell is likely to contain a signifi-
cant amount of empty space that can be efficiently skipped
by using the light trees. As the average overlap approaches
the cell extents, it indicates that there are many lights which
cover most of the cell depth and a list should be used. Us-
ing the average overlap (light extent clipped to cell extent)
instead of average light diameter makes the heuristic more
robust in scenes with a mix of small and large lights. The net
result is that in situations with many large overlapping lights
our algorithm gracefully falls back to [Persson 2013] which is
optimal for that case. For many small lights, only the light
trees will be used, and for realistic distributions containing
both large and small light sources our heuristic picks the
best technique. The alternative approach for small lights,
together with the ability to switch between techniques, is

Figure 3: We classify each tile on the GPU into either list
traversal (blue), tree traversal (green), or combined traversal
(white). Notice the very high coherency in screen-space; very
few tiles go down the mixed path. Scene shown is “CTF-
TitanPass” ©Epic Games.

one of the key reasons which allow our algorithm to provide
the best performance for any light distribution.

3.4 GPU traversal

Listing 3: GPU-friendly stack-less light tree traversal.
unsigned nodeIndex = 0;
while(nodeIndex < nodeCount) {

LightTreeNode node = lightTree[nodeIndex];
if (nodeHit(node, distanceToCameraPlane)) {

if (isLeaf(node)) evaluateLightSources(node);
nodeIndex++;

}
else nodeIndex += getSkipCount(node);

}

Our hybrid algorithm has to combine both tree-traversal and
list iteration for optimal performance. As our tree traversal
code already allows for a variable amount of light sources per
leaf node, we have chosen the following method to combine
both: if the cell contains a list of items, we store a one-node
tree where the root is also a leaf. In this case, the threads
will just iterate over the individual light sources and the only
overhead is a dependent fetch and a bit test.

Notice that this is not a uniform decision for a single tile –
the threads in one tile may hit many different cells concur-
rently and will have to traverse both lists and trees at the
same time. We have optimized the various cases using intrin-
sic instructions, separating the traversal into three different
cases: a) all threads traverse a list, b) all threads traverse
a tree, c) there is divergence and both lists and trees are
traversed.

Which of the cases is executed is mostly dependent on the
light distribution in the scene. Tiles with many overlapping
light sources will go down the list path; and most of the
remaining tiles will traverse trees. Traversing both lists and
trees only happens for tiles with high depth variance (see
also figure 3).

For the tree traversal case, we’ve implemented an optimiza-
tion which loads the tree into local memory (LDS) to im-
prove the main memory access pattern. We only use this

optimization if all threads in a subgroup traverse the same
tree, which is the common case.

4 Results

We have implemented our algorithm using Vulkan and eval-
uated the performance on an AMD RX480 as well as a
NVIDIA GTX 980. We have compared our algorithm
against “practical clustered shading” [Persson 2013]. For
every scene, we have set the maximum depth extent of the
frustum based on the scene extents; this is the only scene-
specific setting we’ve done. While light trees are fully adap-
tive and do not require any scene-specific configuration, the
performance of the “practical clustered shading” algorithm
is highly sensitive to depth partitioning, light source sizes
and distribution. [Persson 2013] describes a partitioning
scheme with 15 exponentially distributed depth slices from
5 to 500 meters and a special “near” slice. Our benchmarks
use a similar scheme (listing 4) with only minor modifica-
tion to maximum depth. Identical grid configuration is used
for hybrid and clustered modes. Even though our hybrid
algorithm can degrade gracefully into either case, we have
separate code paths for each implementation to have the
minimal shader for each implementation.

We have chosen a light size distribution which is typical for
many games; there’s often a very large number of small lights
such as street lamps, flashlights, car head and tail lights,
but only few large light sources, especially with large on-
screen contribution. We have tried to mimic this by using
a light size distribution which results in low per-pixel over-
draw; that is, only a few light sources affect each pixel.

Listing 4: Depth slice index calculation.
int computeSliceIndex(
float logDepth,
float logMinDepth, float logMaxDepth,
int sliceCount)

{
float scaleDenom = (logMaxDepth − logMinDepth)

* (sliceCount − 1.0f);
float scale = 1.0f / scaleDenom;
float bias = 1.0f − logMinDepth * scale;
float slice = max(logDepth * scale + bias,

0.0f));
return min(int(slice), sliceCount − 1);

};

4.1 Preprocessing

Our algorithm requires preprocessing per frame on the CPU
– this includes the light frustum culling, the light sorting, the
light binning, as well as the tree creation. Light binning is
by far the most expensive step that accounts for 50% of total
CPU time, followed by tree creation (25%), sorting (12%),
data upload to the GPU (7%) and frustum culling (3%).
Relative costs of different preprocessing steps are consistent
for different light counts.

Our binning algorithm computes a frustum-aligned grid
bounding box for each light using 2D bounds [Mara and
McGuire 2013] and depth extents. Bounding boxes are used
to scatter lights into grid cells, which takes most of the CPU
time of this step. Binning is also required for clustered shad-
ing algorithm, where it accounts for 85% of the CPU cost.

1024 2048 4096 8192 16384 32768 65536
Light count

0.25

0.5

1

2

4

8

T
im

e
 (

m
s)

CPU Time

Tree
Hybrid
Clustered

Figure 4: Average CPU processing time comparison be-
tween the various approaches at different light counts. The
CPU time scales linearly with the number of lights. For light
counts below 8192, all algorithms require less than 2 ms. Per-
formance data captured on “CTF-TitanPass” at 1920×1080
resolution and 482 tile size, 16 depth slices on Intel i7-4790K
CPU (single threaded).

We have parallelized the tree creation using the Parallel Pat-
terns Library [Microsoft 2016], which provides both paral-
lel sorting as well as a generic parallel for loop and other
constructs. All trees can be processed without locking or
synchronization. This is possible because each tree is com-
pletely independent and all required memory is allocated
upfront with information from the binning step. We have
not performed any other low-level CPU optimizations, such
as vectorization using SIMD intrinsics or ISPC [Intel 2011].
We expect that light binning, frustum culling and parts of
the tree building could be significantly sped up by using
SIMD instructions. Even without further optimization,the
CPU cost is acceptable for real-time applications for all but
the highest light count (see Figure 4).

We store the light data separately from our culling data
structure. That is, the lists and the trees contain light in-
dices and every fetch retrieves the light from a light buffer
indirectly. We found this optimization to significantly re-
duce memory usage with minimal impact on the GPU cost.
Besides cutting down memory, we also measured a signifi-
cant improvement in CPU performance, roughly around 20%
(see figure 5). If needed, light data expansion can be done
on the GPU; which will keep the CPU benefits but requires
an additional pass before the lighting can be performed and
increases GPU memory footprint.

4.2 Rendering

We have tested our algorithm on two scenes – “CTF-
TitanPass” and “EpicCitadel”. The major difference be-
tween those scenes is that “EpicCitadel” features a much
larger view distance. We have also used two different light
distribution algorithms. In “CTF-TitanPass”, we distribute
the lights randomly throughout the scene bounding box,
which produces light sources that do not intersect with the
scene geometry. This is typical for situations where geom-
etry is culled due to occlusion, but the light sources them-
selves remain visible. In “EpicCitadel”, we distribute the

C T H
0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

m
s)

GPU Time

C T H
0

5

10

15

20

25

30

35

T
im

e
 (

m
s)

CPU Time

C T H
0

5000

10000

15000

20000

25000

S
iz

e
 (

K
iB

)

Memory usage

Figure 5: Comparison between duplicated (orange) and
indexed (blue) data for 65536 light sources on “CTF-
TitanPass” at 1920 × 1080 resolution and 482 tile size, 16
depth slices on AMD Fury X GPU and Intel i7-4790K CPU
(single threaded). Using indexed light data improves CPU
execution performance and reduces memory usage, and is
the method we use by default. C is Clustered, T is tree only,
and H is the hybrid method.

light sources directly on the geometry by randomly select-
ing triangles and placing lights near them. Here, all light
sources are guaranteed to intersect with geometry, which is
the most taxing case in terms of light overdraw.

For all algorithms, the screen space tile size plays a critical
performance role. We have measured the performance of
various tile sizes (see figure 6.) For all other tests, we have
used 482 sized tiles which provide the best trade-off between
CPU and GPU performance.

In figure 7a, we show the performance on the “CTF-
TitanPass” level from Unreal Tournament. We have dis-
tributed between 8 and 65 thousand light sources through-
out the scene. The camera follows a fixed path through the
scene, visiting places with short and long view ranges. We
have logged the time spent on the GPU for lighting using
time queries. At low light counts, we found that both clus-
tered shading as well as our “hybrid” algorithm significantly
outperform the “tree”-only approach. With increasing light
numbers, “tree” becomes more competitive, finally surpass-
ing the clustered shading at light counts on both tested
GPUs. We also notice that on the RX 480, the “hybrid”
algorithm consistently provides the best performance. On
the GTX 980, “hybrid” is sometimes slightly outperformed
by “tree”, but in general they are quite close together.

At the beginning of the test, and around frame 1800, we
have the longest view range in this scene. The number of
pixels that traverse trees becomes very high in this case,
as far away grid cells end up containing hundreds of small
light sources. In this case, the tree traversal allows us to
rapidly identify the light sources actually intersecting the
pixel, while clustered shading has to traverse long lists for
those cells.

Figure 7b presents the performance on “EpicCitadel”. The
light sources are evenly placed near the scene geometry. This
level has a much longer view range than “CTF-TitanPass”

16 32 48 64 80 96 112 128 256
Tile size

0

20

40

60

80

100

120

140
ti

m
e
 (

m
s)

CPU timing

16 32 48 64 80 96 112 128 256
Tile size

0

1

2

3

4

5

6

ti
m

e
 (

m
s)

GPU timing

Figure 6: CPU and GPU costs at different tile sizes for our
hybrid algorithm, which is representative for all algorithms.

which makes it particularly challenging for the clustered
lighting approach. Our “tree”-only and “hybrid” algorithms
consistently outperform clustered lighting in this scene. It
highlights the improved robustness of our algorithm; while
clustered lighting cost varies between 0.38ms and 7.0ms on a
GTX 980, our hybrid approach has much smaller difference
between the best (0.4ms) and worst (3.5ms) cases.

5 Conclusion
In this work, we have described a novel approach which im-
proves upon the existing solutions, particularly in worst case
scenarios. Our algorithm prepares an adaptive spatial data
structure on the CPU without any knowledge of the scene
geometry and works in tandem with a highly efficient traver-
sal algorithm on the GPU. We have combined the light trees
with existing 2.5D acceleration structures yielding a new hy-
brid approach which in many cases outperforms each of the
algorithms individually.

As currently proposed, our algorithm prepares all data on
the CPU, but going forward we envision moving more of the
work to the GPU. The first step is likely the per-cell tree
creation, which is already highly parallel on the CPU side.
With other recent advancements in GPU binning [II and
Pattanaik 2016], it also seems feasible to move the whole
pre-process onto the GPU where it could be executed asyn-
chronously with other scene preparation tasks like shadow
map generation.

Acknowledgements
We’d like to thank Epic Games for allowing us to use the
scenes from Unreal Tournament and the UDK. We also want
to thank the anonymous reviewers and our colleagues at
Electronic Arts and AMD for their valuable feedback.

References
Andersson, J., 2009. Parallel graphics in frostbite - current

& future. SIGGRAPH Course: Beyond Programmable
Shading.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and
Stein, C. 2009. Introduction to Algorithms, 3rd ed. MIT
Press and McGraw-Hill.

Ferrier, A., and Coffin, C. 2011. Deferred shading
techniques using frostbite in ”battlefield 3” and ”need for
speed the run”. In ACM SIGGRAPH 2011 Talks, ACM,
New York, NY, USA, SIGGRAPH ’11, 33:1–33:1.

Garawany, R. E., 2016. Deferred lighting in uncharted 4.
SIGGRAPH 2016, Advances in Real-Time Rendering.

Harada, T., McKee, J., and Yang, J. C. 2012. For-
ward+: Bringing Deferred Lighting to the Next Level.
In Eurographics 2012 - Short Papers, The Eurographics
Association, C. Andujar and E. Puppo, Eds.

Harada, T. 2012. A 2.5d culling for forward+. In SIG-
GRAPH Asia 2012 Technical Briefs, ACM, New York,
NY, USA, SA ’12, 18:1–18:4.

II, E. M. T., and Pattanaik, S. N. 2016. A memory
efficient uniform grid build process for gpus. Journal of
Computer Graphics Techniques (JCGT) 5, 3 (September),
50–67.

Intel, 2011. Intel spmd program compiler.
https://ispc.github.io.

MacDonald, D. J., and Booth, K. S. 1990. Heuristics
for ray tracing using space subdivision. Vis. Comput. 6,
3 (May), 153–166.

Mara, M., and McGuire, M. 2013. 2d polyhedral bounds
of a clipped, perspective-projected 3d sphere. Journal of
Computer Graphics Techniques (JCGT) 2, 2 (August),
70–83.

Microsoft, 2016. Parallel patterns li-
brary. https://docs.microsoft.com/en-
us/cpp/parallel/concrt/parallel-patterns-library-ppl.

Olsson, O., Billeter, M., and Assarsson, U. 2012.
Clustered deferred and forward shading. In HPG ’12: Pro-
ceedings of the Conference on High Performance Graphics
2012.

Olsson, O., Persson, E., and Billeter, M. 2015. Real-
time many-light management and shadows with clustered
shading. In ACM SIGGRAPH 2015 Courses, ACM, New
York, NY, USA, SIGGRAPH ’15, 12:1–12:398.

Örtegren, K. 2015. Clustered Shading: Assigning arbitrar-
ily shaped convex light volumes using conservative rasteri-
zation. Master’s thesis, Blekinge Institute of Technology.

Persson, E., 2013. Practical clustered shading. SIG-
GRAPH Course: Advances in Real-Time Rendering in
Games.

Smits, B. 1998. Efficiency issues for ray tracing. J. Graph.
Tools 3, 2 (Feb.), 1–14.

Sousa, T., and Geffroy, J., 2016. The devil is in the
details: idtech 666. SIGGRAPH 2016, Advances in Real-
Time Rendering.

0 500 1000 1500 2000 2500 3000
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Pixels using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
Frame number

0.0

0.5

1.0

1.5

2.0
T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Pixels using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
Frame number

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
Frame number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Pixels using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
Frame number

0

1

2

3

4

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
Frame number

0

1

2

3

4

5

6

7

8

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000
0%

50%

100%
Pixels using trees/lists

Lists
Trees

(a) Results on the CTF-TitanPass level.

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Pixels using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Pixels using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Pixels using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
Frame number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

T
im

e
 (

m
s)

AMD RX480
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
Frame number

0

1

2

3

4

5

6

7

T
im

e
 (

m
s)

NVIDIA GTX 980
Clustered
Hybrid
Tree

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Cells using trees/lists

Lists
Trees

0 500 1000 1500 2000 2500 3000 3500
0%

50%

100%
Pixels using trees/lists

Lists
Trees

(b) Results on the EpicCitadel level.

Figure 7: Results on our test scenes for a fly-through at varying light counts (from left to right: 8192, 16384, 32768, 65536).
The fastest algorithm – with the lowest geometric average time over the test – is bold. Our tree and hybrid algorithms are
generally very close, with a slight advantage for the hybrid algorithm on the AMD RX 480 card, and a slight advantage for the
tree only algorithm on the GTX 980. The bottom two rows show how many grid cells have been assigned lists or trees in the
hybrid case, and how many pixels have actually traversed a list or tree.

